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Abstract— This paper evaluates mapping and path planning
methods for mobile robot with non-holonomic constraint in
the narrow pathways. Selection of sensors such as depth
camera or LiDAR sensor is complex problem as it depends on
applications, demand for cost, robustness and data processing.
Along with sensor selection map generation is essential task
for mobile robot navigation. This paper presents experimental
evaluation of laser-based mapping algorithm i.e., Gmapping
and vision based mapping i.e., RTAB-Map. The platform
used for autonomous navigation is mobile robot with non-
holonomic constraint. The path planning for mobile robot
with non-holonomic constraint is more complex as not all
arbitrary trajectories are kinematically feasible. The application
of mobile robot navigation is to transfer agriculture products in
greenhouse from one place to another. Generally, the pathways
of greenhouse are narrow, which often results in the planner
failing to generate a traversable trajectory if the mobile
robot is restricted to forward movement, hence the switch-
back (forward and backward) path planning is essential to
navigate in such environments. In the following discussion,
we implement the Reeds-Shepp curve based path planning
for mobile robot with a non-holonomic constraint to navigate
in narrow pathways. Reeds-Shepp curve can generate various
combinations of such switch-back trajectories and it remains
unmatched in terms of computation efficiency and reliability
compared to other curves. Effectiveness of the proposed path
planning method is validated experimentally.

I. INTRODUCTION

Over the last two decades, the amount of research ac-

tivities in the field of mobile robot has increased rapidly,

especially in agricultural environments. Green houses are

known as an example of agricultural environment and they

have narrow pathways, where planning methods have been

widely investigated [1], [2]. The application of mobile robots

with holonomic constraints such as omnidirectional robots

are limited to transfer light load and are more expensive. In

agricultural fields and in greenhouses, it is required to carry

heavy loads in dirty and often muddy environments, which

makes the use of omnidirectional wheels infeasible.

Furthermore, agricultural environments are complex with

many sources of uncertainty such as unreliable readings of

distance to vegetation and unreliable dead-reckoning. Even

so, accurate mapping is necessary for effective navigation in

these environments. In the green house environment, there

have been several implementations of mobile robots [3], [4],

[5]. But as far as we know, there have been no experimental
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Fig. 1: A four-wheeled mobile robot with non-holonomic

constraint

comparisons between the existent mapping methods in agri-

cultural scenarios. In this paper, we experimentally evaluate

a grid-based 2D mapping method [6] in the implementation

provided by ROS as GMapping [7] and a 3D mapping

method RTAB-Map [8] on the basis of quality and update

frequency of the grid maps produced, which is the first

contribution.

Path planning for mobile robot with non-holonomic con-

straints is a complex problem because not every trajectory

is kinematically feasible. Common path planning algorithms

for narrow spaces include probabilistic road map (PRM)

[9], extended spatial tree (EST), and rapid search random

tree (RRT*) [10]. One of the approaches to planning non-

holonomic mobile robot trajectory is to apply Reeds-Shepp

curve [11], which is known as combinations of circular and

linear trajectories allowing switching back motion.

Integrating Reeds-Shepp curve to planning algorithm has

been proposed in [12] with RRT algorithm for parking prob-

lem 1. In this paper, we implement and evaluate combination

of Reed-Shepp curve and RRT* planning algorithm on a

four-wheeled mobile robot in greenhouse environment. The

second contribution of the paper is to evaluate the planning

approach based on Reeds-Shepp curve in the greenhouse

environment to obtain suggestions for more practical use.

II. PROBLEM DEFINITION

A four-wheel mobile robot with non-holonomic constraint

is used as a platform for the experiment as shown in Figure

1. The mobile robot is equipped with four 250W hub motor

and a 110Ah battery. The robot pose is uniquely described

by [x,y,θ ]∈R
3 where [x,y,θ ] represents the coordinates and

orientation of the mobile robot in the global frame. The

1A ROS implementation of Reeds-Shepp curve exists in [13], but it is
not combined with any planning algorithm.
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TABLE I: Configuration parameters of the environment and

the mobile robot

Width of pathways 0.60 m
Robot speed 2.5 m/sec
Mobile robot (l,b,h) 100×50×50
Robot minimum turning radius 0.35 m
Odometry sensor depth camera (RealSense)
Vision sensor (obstacle detection) 2D LiDAR (Sick)
CPU of controller PC 2.9 Ghz Intel Core i7
Memory & Linux version 16 GByte, Ubuntu 16.04.7 LTS
Global path planning algorithm RRT* and A*
Local path planning algorithm E-band and DWA
localization algorithm AMCL and RTAB-Map

Fig. 2: Navigational environment of the robot

problem of mapping and path planning can be defined in

two statements.

1) The depth camera sensor and the laser scanner sensor

from the viewpoint of computational time are eval-

uated. Also, their availability in agricultural environ-

ments is discussed.

2) The mobile robot navigation in narrow pathways,

where forward-backward switching is required due to

non-holonomic constraint is discussed. In this paper

we implement Reeds-Shepp curve-based local path

planning to adapt the middleware of ROS to such

constrained mobile robot kinematics.

The mobile robot has double Ackerman steering system.

The navigation environment is a greenhouse with narrow

pathways surrounded by vegetation as shown in Figure 2.

The parameters of mapping and navigation are defined in

TABLE I. 2

III. EVALUATION OF ROBOT MAPPING AND

LOCALIZATION

Implementation of navigation is based on the following

two packages:

2The abbreviations in TABLE I are: AMCL, Adaptive Monte Carlo Lo-
calization; RRT*, Rapidly exploring random tree; DWA, Dynamic window
approach.

• GMapping: For 2D mapping (SLAM), Rao-

Blackwellized Particle Filtering [6] is implemented

through GMapping, which is an open-source

implementation of SLAM OpenSLAM. It creates

a 2D occupancy grid map from laser scan data and the

mobile robot pose. The sensor used for mapping are

a Sick laser scanner for observation of 2D points and

either a ZED stereo camera or a RealSense camera to

obtain odometry (robot pose) information.

• RTAB-Map: For 3D mapping, RTAB-Map [14] is used.

It can improve accuracy of the localization in agricul-

tural environment with high vegetation conditions such

as vegetables trees and vegetables leaves while it might

take more computation in comparison with 2D mapping

methods.

The two algorithms i.e., Grid mapping and RTAB-Map

generate an occupancy grid map. We evaluate whether the

quality of the generated map is suited for mobile robot

navigation.

A. Narrow pathways with fixed-height rack environment

In this environment, as shown in Figure 3, the navigation

environment of the mobile robot has a narrow pathway and

fixed rack on both sides of the pathways. The height of the

plant is 0.60m from the ground and width of pathways is

0.75m.

It was verified that the GMapping generates a more reliable

map in such environmental conditions. The mapping was

evaluated by its robustness, map update rate and reliability.

Sick LiDAR scanner (TIM781) was used for mapping and

RealSense camera (D435) provided visual odometry infor-

mation as its function. The parameter values used in our

experiment is given in TABLE II.

The generated grid map with the top view of mapped

environments is shown in Figure 4. It was confirmed that

the Lidar-based SLAM (GMapping) reconstructed a more

reliable map of the environment. Through totally 18 trials,

the RTAB-Map failed from five to six times per trial to com-

pute visual odometry estimation due to poor image feature

detection. The map generated by RTAB-Map is shown in

Figure 5.

Fig. 3: Fixed hight rack environment
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TABLE II: Configuration parameters of localization by par-

ticle filter

Parameter Value Description
Particle 35 Number of particles in the filter
linearUpdate 1.2 Travelled distance for scan processing
linearUpdate 0.7 Rotated angle for scan processing
delta 0.04 Occupancy grid resolution (m)
occ-thresh 0.20 Threshold for occupied cell
iterations 6 The number of iterations

Fig. 4: Occupancy grid map generated by GMapping

B. Narrow pathways with natural obstacles of different
height and density

In this environment, the pathways are surrounded by veg-

etation such as tomato plants and vines. Greenhouse features

such as racks are hidden by the vegetation as shown in

Figure 6. The average height of plants is approximately 1.5m

and the pathway width is 0.75m. In the process of RTAB-

Map, only RealSense camera information was used for both

3D map creation and visual odometry estimation inside the

process. TABLE III 3 shows a list of relevant parameters and

the values used in the experiments. RTAB-Map generates

TABLE III: Configuration parameters of map building

parameter Value Description
Grid/Cellsize 0.06 Occupancy grid resolution (m)
Mem/STMsize 12 Size of STM
Rtabmap/MemoryThr 0 Size of WM (0 = Inf.)
Rtabmap/DetectionRate 2 Detection rate (Hz)
Vis/FeatureType 6 Type of visual feature
Vis/Cortype 1 Feature matching

the occupancy grid map by computing 3D point clouds

of the environment. During the mapping process, it was

observed that the RTAB-Map often estimates incorrect robot

poses. The robot pose was corrected by revisiting the same

3The abbreviation of mentioned terms in TABLE III are STM: Short term
memory, WM: Working memory.

TABLE IV: Performance of mapping

Occupancy grid performance analysis - GMapping
Sensor Map quality Map-update time (sec)
2D Lidar High 0.0552
Occupancy grid performance analysis - RTAB-Map
Sensor Map quality Map-update time (sec)
Depth camera Good 0.0976

position multiple times. The mobile robot fails to recognise

the position (x,y,θ) in 4 trails out of 10.

Figure 8 illustrates the occupancy grid map and Figure

7 illustrates the 3D point cloud of the environment from a

third-person perspective. It was verified that the navigation

environment has multiple pathways and the RTAB-Map

could detect large loop closure effectively, given that miss-

recognition of position can be avoided by multiple runs in the

environment. Therefore, the generated grid map is reliable for

navigation tasks.

C. Evaluation of computation time and discussion

TABLE IV depicts performance of RTAB-Map and GMap-

ping in terms of map update frequency, sensor type, and

map quality. The time in TABLE IV states the time required

to update the 2D occupancy grid map. It was verified that

the GMapping generates high quality map in fixed rack

environments. In the fixed height rack environment, depth

camera sensors failed to generate a map using GMapping due

to irregular distribution of sunlight. And some of the invisible

obstacles, which can be regarded as noise, were detected in

the map. It also verified that the RTAB map generates good

quality map in complex environment which is reliable for

navigation but when compared with a frame rate of 20Hz in

2D LiDAR, observation update of RTAB-Map was around

10Hz, which limited navigation speed.

IV. EVALUATION OF PATH PLANNING IN NARROW

PATHWAYS

The aim of path planning techniques is to find the opti-

mal path between [xi,yi,θi] and [x f ,y f ,θ f ], where i and f

Fig. 5: Occupancy grid map generated by RTAB-MAP
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Fig. 6: Greenhouse environment

indicating the initial and final positions. The path planning

algorithms can be divided into two broad categories:

1) Global path planning: When the environment is com-

pletely known before the robot moves, a collision-free

trajectory with the lowest cost from the starting point

to the target can be obtained by global path planning

algorithms, as well as the cost in terms of travelled

distance, obstacle avoidance, time to completion, etc.

In such cases, the complete information can only be

available in static environments, where collision-free

paths are selected and planned off-line. In this study we

evaluated the RRT* and A* based global path planing.

2) Local path planning: Local path planning algorithms

transform a path into suitable subpaths and the local

planner creates the path taking into consideration the

dynamic obstacle and the robot kinematics. And there-

fore, to recalculate the path at a specific update rate, the

map is reduced to the surroundings of the robot called

local map and is updated as the robot is moving around

in the environment. It is not possible to use the whole

map because the sensors are unable to update the map

in all regions and a large number of cells would raise

the computational cost. Therefore, with the updated

local map and the global waypoints, the local planning

generates avoidance strategies for dynamic obstacles

and tries to match the trajectory as much as possible

to the provided waypoints from the global planner.

Fig. 7: Occupancy grid map generated by RTAB-Map

Fig. 8: 3D point cloud of environment

Goal 

Global planner (RRT*)

Local planner (E-band)Odometry

Controller Trajectory (Reeds

Map

Global cost-map

Local cost-map

Sensor sources

Fig. 9: Information flow among modules for navigation

The grid map is also broadly divided into two category of

global cost map and local cost map. The cost map represents

the cost values of the occupied cells which decrease with

distance.

A. The implemented path planning method considering non-
holonomic constraint for narrow pathways

The process of planning is explained in Figure 9. The path

planning is based on the ROS navigation stack. After a goal

is assigned as (x f ,y f ,θ f ), in the first step, RRT* algorithm

generates a global trajectory considering the kinematic con-

straints of the mobile robot with nonholonomic constraint.

In the next step, the E-band local planner [16] generates

sub-trajectory by connecting the center points of the band

using various heuristics. The sub-goal is passed to Reeds-

Shepp curve, which generates the curve with the combination

of curve and straight line to the sub-goal given by E-band

planner. E-band planner drives the mobile robot towards the

trajectory generated by Reeds-Shepp curve.

B. RRT* based global planner

Rapidly Random Tree generates a tree to reach the goal

position by generating random nodes in the free space. The

tree starts from the start node and expands until it reaches the

target position (node). Figure 10 illustrates the path generated

by the RRT* algorithm in the 3D space (x,y,θ) .
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Fig. 10: Illustration of path planned by RRT*

(a) (b)

Fig. 11: Illustrations of path planned by Reeds-Shepp

C. Reeds-Shepp curve

Reeds-Shepp’s model is implemented to get a path for

the mobile robot to navigate in the forwards and backwards

direction. Reeds-Shepp curve is categorized into 12 classes,

and admit a total of 48 patterns [11] of continuous curvature.

A sub-trajectory of length P given by E-band local planner

is mapping from start position in the configuration space

C in 3D space, R
3. The configuration is denoted by R3

= [x(s),y(s),θ(s)], where s ∈ [0, l] and l is the total length

of P. Intuitively, P is a continuous curve in C. Given an

initial configuration Qi and a finial configuration Q f , a path

P is said to be feasible if P(0) = Qi and P(l) = Q f can

be followed by the non-holonomic mobile robot. The two

different generated path from the robot’s current position

and orientation, (xr,yr,θr), at any position s, is illustrated

in Figure 11.

D. Evaluation of performance and discussion

For comparison, we evaluated two global path planners

(RRT* and A*) and two local planners (E-band Reeds-Shepp

and DWA). The distance of goal from start position was 8

m. Since RRT* algorithm uses sampling based approaches,

it is not the deterministic and therefore sometime it failed to

generate trajectory. The observed probability of generating

trajectory using RRT* in narrow pathways environment was

80%. The averages computational evaluation is shown in

TABLE V 4. The execution time of the RRT* compared

with A* is almost same, A* performed slightly slower.

The DWA-based local planner shows poor performance to

4The abbreviation of above mentioned terms are S: Succeed to generate
trajectory, T: Total trail.

TABLE V: Performance of path planning

Average path planning 20 trail (RRT*) Global planner
Processing(s) Path length(m) Trail (S/T)
0.0980 7.20 m 18/20

Average path planning 20 trail (A*) Global Planner
Processing(s) Path length(m) Trail (S/T)
0.1021 8.00 m 20/20

Average path planning 20 trail (E-band) - Local Planner
Processing(s) Path length(m) Trail (S/T)
0.0821 9.6 m 6/20

Average path planning 20 trail (Reeds-Shepp) - Local Planner
Processing(s) Path length(m) Trail (S/T)
0.0640 8.4 m 18/20

generate transversable trajectory in narrow pathways. The

observed probability of generating trajectory using DWA

in narrow pathways environment is 30%. On the other

hand, the proposed combination of A*-based global planner

and Reeds-Shepp curve-based local planner through E-band

planner was also evaluated. The success rate of the method is

80%. In addition, the distance traveled (trajectory) by robot

to reach goal position, RRT* generates an 10% shorter path

than A*. The evaluation is done by kepping A* as global

planner for DWA and Reeds sheep local planner.

V. DISCUSSION

This study focused on the analysis of mapping and path

planning for a non-holonomic mobile robot in the narrow

pathways and the factor on which it is evaluated are:

• The distance of mobile robot from the obstacles.

• The feasibility of path in the given environment for non-

holonomic mobile robot.

• The computational time for path planning.

• Probability to generate feasible path.

When the non-holonomic mobile robot navigated through

the curve, the Reeds-Shepp curve generated curve combining

forward and reverse path planning. The mobile robot made

switchback motions following the generated curves. Figures

12 and 13 show the trajectory generated by the mobile robot

in two different environments.

The local path planner, E-band planner generated the sub-

goal and Reeds-Shepp curve generated the trajectory, the

trajectory generated by Reeds-Shepp curve is shown in

Figure 14. Figure 15 illustrates the trajectory snapshot of

mobile robot navigation in green-house environment.

VI. CONCLUSION

In this paper, we compared several path planning and

mapping techniques. The experimental evaluation showed

that in the fixed rack environment, G-mapping based map-

ping method using laser sensors and depth camera generates

high quality occupancy grid map. In complex environment

pathways surrounded by vegetable such as tomato plants,

RTAB map generated reliable map for navigation. The path

planning based on A* and Reeds- Shepp curve generated

smother paths in low computational time. The combination

of Reeds-Shepp curve and RRT* realized navigation through
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Fig. 12: Trajectory generated in narrow pathways (1)

Fig. 13: Trajectory generated in narrow pathways (2)

narrow pathways by switch-back motion effectively, but there

were some cases where environments are still more complex

(e.g., zig-zag narrow. The main future work is to improve the

recovery behavior, in order to restart the planning if the robot

is stuck or the behavior is too oscillatory. The connectivity of

Reeds-Shepp based local planner can be improved in order

to generate smother trajectory. Additionally, the navigation

will be further tested in uneven terrain environment where

vibration cost should be also taken into consideration [17].
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